18
Bioremediation for Sustainable Environmental Cleanup
Tyagi, B. and N. Kumar. 2021. Bioremediation: principles and applications in environmental management.
In Bioremediation for Environmental Sustainability. 3–28. Elsevier.
Uday, U. S. P., T. K. Bandyopadhyay and B. Bhunia. 2016. Bioremediation and detoxification technology for treatment
of dye (s) from textile effluent. Textile Wastewater Treatment, 75–92.
United States Environmental Protection Agency (USEPA). 2000. Introduction Phytoremediation. EPA 600/R-99/107,
U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.
Upendar, G., S. Dutta, P. Bhattacharya and A. Dutta. 2017. Bioremediation of methylene blue dye using Bacillus
subtilis MTCC 441. Water Sci. Technol. 75(7): 1572–1583.
U.S. EPA Seminars. Bioremediation of Hazardous Waste Sites: Practical Approach to Implementation, EPA/625/
K96/ 001.
Van Aken, B. 2009. Transgenic plants for enhanced phytoremediation of toxic explosives. Curr. Opin. Biotechnol. 20(2):
231–236.
Van Aken, B. and R. Bhalla. 2011. Microbial degradation of polychlorinated biphenyls. Ind. Toxic Wastes 152166.
Varjani, S. J. and V. N. Upasani. 2017. Crude oil degradation by Pseudomonas aeruginosa NCIM 5514: influence of
process parameters Indian J. Exp. Biol. 55: 493–497.
Varjani, S., P. Rakholiya, T. Shindhal, A. V. Shah and H. H. Ngo. 2021. Trends in dye industry effluent treatment and
recovery of value added products. J. Water Process. Eng. 39: 101734.
Vidali, M. 2001. Bioremediation. an overview. Pure Appl. Chem. 73(7): 1163–1172.
Vikrant, K., B. S. Giri, N. Raza, K. Roy, K. H. Kim, B. N. Rai and R. S. Singh. 2018. Recent advancements in
bioremediation of dye: current status and challenges. Bioresour. Technol. 253: 355–367.
Wagh, M. S., W. J. Osborne and S. Sivarajan. 2022. Bacillus xiamenensis and earthworm Eisenia fetida in bio removal
of lead, nickel and cadmium: a combined bioremediation approach. Appl. Soil Ecol. 176: 104459.
Wang, D. G., M. Yang, H. L. Jia, L. Zhou and Y. F. Li. 2009. Polycyclic aromatic hydrocarbons in urban street dust
and surface soil: comparisons of concentration, profile, and source. Arch. Environ. Contam. Toxicol. 56(2):
173–180.
Wang, X., Y. Wang, S. Ning, S. Shi and L. Tan. 2020. Improving azo dye decolorization performance and halotolerance
of Pichia occidentalis A2 by static magnetic field and possible mechanisms through comparative transcriptome
analysis. Front. Microbiol. 11: 1–10.
Whelan, M. J., F. Coulon, G. Hince, J. Rayner, R. McWatters, T. Spedding and I. Snape. 2015. Fate and transport of
petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere. 131: 232240.
Wiegel, J. and Q. Wu. 2000. Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microb. Ecol.
32(1): 1–15.
Wolskm, E. A., V. Barrera, C. Castellari and J. F. González. 2012. Biodegradation of phenol in static cultures by
Penicillium chrysogenum ERK1: catalytic abilities and residual phototoxicity. Rev. Argent. Microbiol. 44(2):
113–121.
Yadav, J. S., H. Doddapaneni and V. Subramanian. 2006. P450ome of the white rot fungus Phanerochaete
chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters.
Ye, Z., H. Li, Y. Jia, J. Fan, J. Wan, L. Guo, X. Su, Y Zhang, W. M. Wu and C. Shen. 2020. Supplementing resuscitation-
promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus
biphenylivorans strain TG9T. Environ. Pollut. 263: 114488.
Yu, X. Z. and J. D. Gu. 2007a. Accumulation and distribution of trivalent chromium and effects on hybrid willow
(Salix matsudana Koidz × alba L.) metabolism. Arch. Environ. Contam. Toxicol. 52: 503–511.
Yu, X. Z. and J.D. Gu. 2007b. Metabolic responses of weeping willows to selenate and selenite. Env. Sci. Pollut. Res.
14: 510–517.
Yu, X. Z. and J. D. Gu. 2008a. The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two
willow trees. Ecotoxicol. 17:143-152.
Yu, X. Z. and J. D. Gu. 2008b. Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent
and trivalent chromium in hankow willows (Salix matsudana Koidz) Ecotoxicol. Environ. Saf. 70: 216–222.
Zhang, J. L. and C. L. Qiao. 2002. Novel approaches for remediation of pesticide pollutants. Int. J. Environ.
Pollut. 18(5): 423–433.
Zhang, W., Z. Lin, S. Pang, P. Bhatt and S. Chen. 2020. Insights into the biodegradation of lindane
(γ-hexachlorocyclohexane) using a microbial system. Frontiers in Microbiology. 11: 522.
Zheng, M., W. Wang, M. Hayes, A. Nydell, M. A. Tarr, S. A. Van Bael and K. Papadopoulos. 2018. Degradation of
Macondo 252 oil by endophytic Pseudomonas putida. J. Environ. Chem. Eng. 6(1): 643–648.
Zhou, H., S. Zhang, J. Xie, H. Wei, Z. Hu and H. Wang. 2020. Pyrene biodegradation and its potential pathway
involving Roseobacter clade bacteria. Int. Biodeterior. Biodegrad. 150: 104961.
Zhu, D. H., F. H. Nie, Q. L. Song, W. Wei, M. Zhang, Y. Hu, H. Y. Lin, D. J. Kang, Z. B. Chen and J. J. Chen. 2022.
Isolation and genomic characterization of Klebsiella Lw3 with polychlorinated biphenyl degradability. Environ.
Technol., 1–11.